‘ nienugmented
S
ND‘PVZGL
September 2016
DocID026945 Rev 2
1/19
This is information on a product in full production.
www.st.com
STGIPN3H60AT
SLLIMM™-nano small low-loss intelligent molded module
IPM, 3 A, 600 V, 3-phase IGBT inverter bridge
Datasheet - production data
Features
IPM 3 A, 600 V, 3-phase IGBT inverter
bridge including control ICs for gate driving
and freewheeling diodes
Optimized for low electromagnetic
interference
VCE(sat) negative temperature coefficient
3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull-down
resistors
Undervoltage lockout
Internal bootstrap diode
Interlocking function
Optimized pinout for easy board layout
85 kΩ NTC for temperature control (UL1434
CA 2 and 4)
Applications
3-phase inverters for motor drives
Dish washers, refrigerator compressors,
heating systems, air-conditioning fans,
draining and recirculation pumps
Description
This intelligent power module implements a
compact, high performance AC motor drive in a
simple, rugged design. It is composed of six
IGBTs with freewheeling diodes and three half-
bridge HVICs for gate driving, providing low
electromagnetic interference (EMI) characteristics
with optimized switching speed. The package is
optimized for thermal performance and
compactness in built-in motor applications, or
other low power applications where assembly
space is limited. This IPM includes an operational
amplifier, completely uncommitted, and a
comparator that can be used to design a fast and
efficient protection circuit. SLLIMM™ is a
trademark of STMicroelectronics.
Table 1: Device summary
Order code
Marking
Package
Packing
STGIPN3H60AT
GIPN3H60AT
NDIP-26L
Tube

Contents
STGIPN3H60AT
2/19
DocID026945 Rev 2
Contents
1 Internal schematic diagram and pin configuration ....................... 3
2 Electrical ratings ............................................................................. 6
2.1 Absolute maximum ratings ................................................................ 6
2.2 Thermal data ..................................................................................... 6
3 Electrical characteristics ................................................................ 7
3.1 Inverter part ....................................................................................... 7
3.2 Control part ....................................................................................... 9
3.2.1 NTC thermistor ................................................................................. 10
4 Application circuit example .......................................................... 12
4.1 Guidelines ....................................................................................... 13
5 Package information ..................................................................... 14
5.1 NDIP-26L type C package information ............................................ 15
5.2 NDIP-26L packing information ........................................................ 17
6 Revision history ............................................................................ 18
GND (1)
T (2)
VocW (a)
HIN w (4)
LIN W (5)
T (5)
NC (7)
NC (8)
Vac v (e)
HIN V (10)
qum)
NC (12)
We U (13)
HIN U (14)
T(15)
W U (16)
N w (25)
w‘ OUT w (25)
Vbnm w (24)
NV(23)
v, OUT v (22p
Vban 12‘)
NU(20)
U, ou‘ru (19)
P (18)
Vbum U [17!
E]
STGIPN3H60AT
Internal schematic diagram and pin configuration
DocID026945 Rev 2
3/19
1 Internal schematic diagram and pin configuration
Figure 1: Internal schematic diagram
Internal schematic diagram and pin configuration
STGIPN3H60AT
4/19
DocID026945 Rev 2
Table 2: Pin description
Pin
Symbol
Description
1
GND
Ground
2
T
NTC thermistor terminal
3
VCC W
Low voltage power supply W phase
4
HIN W
High side logic input for W phase
5
LIN W
Low side logic input for W phase
6
T
NTC thermistor terminal
7
NC
Not connected
8
NC
Not connected
9
VCC V
Low voltage power supply V phase
10
HIN V
High side logic input for V phase
11
LIN V
Low side logic input for V phase
12
NC
Not connected
13
VCC U
Low voltage power supply for U phase
14
HIN U
High side logic input for U phase
15
T
NTC thermistor terminal
16
LIN U
Low side logic input for U phase
17
VBOOT U
Bootstrap voltage for U phase
18
P
Positive DC input
19
U
U phase output
20
NU
Negative DC input for U phase
21
VBOOT V
Bootstrap voltage for V phase
22
V
V phase output
23
NV
Negative DC input for V phase
24
VBOOT W
Bootstrap voltage for W phase
25
W
W phase output
26
NW
Negative DC input for W phase
flflflflflflflflflflflfl
STGIPN3H60AT
Internal schematic diagram and pin configuration
DocID026945 Rev 2
5/19
Figure 2: Pin layout (top view)
(*) Dummy pin internally connected to P (positive DC input).
(*) (*)
PIN16
PIN17
PIN1
PIN26
PIN #1 ID
AM09368V1
T
“max
: M—
m 7
1c CELsat)(max)(TJ[max)'|C(TC))
we) VT“
Electrical ratings
STGIPN3H60AT
6/19
DocID026945 Rev 2
2 Electrical ratings
2.1 Absolute maximum ratings
Table 3: Inverter part
Symbol
Parameter
Value
Unit
VCES
Each IGBT collector emitter voltage (VIN(1)= 0)
600
V
± IC(2)
Each IGBT continuous collector current at TC = 25°C
3
A
± ICP(3)
Each IGBT pulsed collector current
18
A
PTOT
Each IGBT total dissipation at TC = 25°C
8
W
Notes:
(1)Applied between HINi, LINi and GND for i = U, V, W.
(2)Calculated according to the iterative formula:
(3)Pulse width limited by max junction temperature.
Table 4: Control part
Symbol
Parameter
Min.
Max.
Unit
VOUT
Output voltage applied between OUTU, OUTV, OUTW -
GND
Vboot - 18
Vboot + 0.3
V
VCC
Low voltage power supply
- 0.3
18
V
Vboot
Bootstrap voltage
- 0.3
618
V
VIN
Logic input voltage applied between HINi, LINi and GND
for i = U, V, W
- 0.3
VCC + 0.3
V
∆VOUT/dT
Allowed output slew rate
50
V/ns
Table 5: Total system
Symbol
Parameter
Value
Unit
VISO
Isolation withstand voltage applied between each pin and
heatsink plate (AC voltage, t = 60 s.)
1000
V
Tj
Power chips operating junction temperature range
-40 to 150
°C
TC
Module operation case temperature range
-40 to 125
°C
2.2 Thermal data
Table 6: Thermal data
Symbol
Parameter
Value
Unit
RthJA
Thermal resistance junction-ambient
50
°C/W
STGIPN3H60AT
Electrical characteristics
DocID026945 Rev 2
7/19
3 Electrical characteristics
3.1 Inverter part
TJ = 25 °C unless otherwise specified.
Table 7: Static
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VCE(sat)
Collector-emitter
saturation voltage
VCC = Vboot = 15 V, VIN(1) = 0 to 5 V, IC = 1 A
-
2.15
2.6
V
VCC = Vboot = 15 V, VIN(1) = 0 to 5 V, IC = 1 A,
TJ = 125 °C
-
1.65
ICES
Collector-cut off current
(VIN(1) = 0 “logic state”)
VCE = 550 V, VCC = VBoot = 15 V
-
250
µA
VF
Diode forward voltage
VIN(1) = 0 “logic state”, IC = 1 A
-
1.7
V
Notes:
(1)Applied between HINi, LINi and GND for i = U, V, W (LIN inputs are active-low).
Table 8: Inductive load switching time and energy
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
ton(1)
Turn-on time
VDD = 300 V,
VCC = Vboot = 15 V,
VIN(2) = 0 to 5 V,
IC = 1 A
(see Figure 4: "Switching time definition")
-
275
-
ns
tc(on)(1)
Crossover time (on)
-
90
-
toff(1)
Turn-off time
-
890
-
tc(off)(1)
Crossover time (off)
-
125
-
trr
Reverse recovery time
-
50
-
Eon
Turn-on switching energy
-
18
-
µJ
Eoff
Turn-off switching energy
-
13
-
Notes:
(1)tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are the switching time of IGBT itself under
the internally given gate driving condition.
(2)Applied between HINi, LINi and GND for i = U, V, W (LIN inputs are active-low).
2
Ir 2X
W W
a ,J Ji
\j‘ 1 no r --
100%t mmk
tn
VCE Ic Ic A VCE
¥
V|V\ VIA
to“ (on
([Low (@an
Vwcm Hm [90%K ‘ 0%vcg \mom WW3 10%|c
a turrron
( ) (b) mrn—off mommy
Electrical characteristics
STGIPN3H60AT
8/19
DocID026945 Rev 2
Figure 3: Switching time test circuit
Figure 4: Switching time definition
VBOOT>VCC
L
IC
VCE
VCC
INPUT
01
BUS
Lin
Hin
Vcc
LVG
HVG
OUT
BOOT
GND
STGIPN3H60AT
Electrical characteristics
DocID026945 Rev 2
9/19
3.2 Control part
Table 9: Low voltage power supply (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VCC_thON
Undervoltage turn-on threshold
9.1
9.6
10.1
V
VCC_thOFF
Undervoltage turn-off threshold
7.9
8.3
8.8
V
VCC_hys
Undervoltage hystereses
0.9
V
Iqccu
Undervoltage quiescent supply current
VCC < 7.9 V
250
330
µA
Iqcc
Quiescent current
VCC = 15 V
350
450
µA
Table 10: Bootstrapped voltage (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Vboot_thON
Undervoltage turn-on threshold
8.5
9.5
10.5
V
Vboot_thOFF
Undervoltage turn-off threshold
7.2
8.3
9.2
V
Vboothys
Undervoltage hystereses
0.9
V
Iqboot
Quiescent current
250
µA
RDS(on)
Bootstrap driver on-resistance
VCC > 12.5 V
125
Ω
Table 11: Logic inputs (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Vil
Low level logic input voltage
1.1
V
Vih
High level logic input voltage
1.8
V
Iil
Low level logic input current (1)
VIN = 0 V (1)
-1
µA
Iih
High level logic input current (1)
VIN = 15 V (1)
20
70
µA
Dt
Dead time(2)
320
ns
Notes:
(1)Applied between HINi, LINi and GND for i = U, V, W
(2)See Figure 5: "Dead time and interlocking definition"
LIN
HIN
m ( , m (
LVG i
fi‘m K—I
HVG
lrterlozklng an(tion
AM03794w
(Fm
Electrical characteristics
STGIPN3H60AT
10/19
DocID026945 Rev 2
Figure 5: Dead time and interlocking definition
3.2.1 NTC thermistor
Table 12: NTC thermistor
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
R25
Resistance
T = 25 °C
85
kΩ
R100
Resistance
T = 100 °C
5388
Ω
B
B-constant
T = 25 °C to 100 °C
4092
K
T
Operating temperature
-25
125
°C
Where T are temperatures in Kelvins
Figure 6: NTC resistance vs. temperature
0
500
1.000
1.500
2.000
2.500
3.000
3.500
-40 -20 020 40 60 80 100 120 140
NTC [kΩ]
[°C]
Min
Max
Typ
GIPD17220131349FSR
YD
STGIPN3H60AT
Electrical characteristics
DocID026945 Rev 2
11/19
Figure 7: NTC resistance vs. temperature (zoom)
0
5
10
15
20
25
30
35
40
50 70 90 110 130 150
NTC [kΩ]
[°C]
Min
Max
Typ
GIPD17220131350FSR
Z
‘
a
I: a
\ f %
W ‘
a a 5 ‘
n u u l;
1% 1* Ar 4
5 5 ¥ >—w
‘# ‘ fl
‘2 . a ‘ g E—(E
g E s i g 2 i a g g
4 i
s; z a
E E s i§ !
L
E; 7*
4
’7 ,
EU; 5 SJ a
:Hh JHM’HM WNW ”HM
x
w
45H
E g ‘ h
gTW/HM‘
iU 3U 3U EU 5U i 3 i
MICROCONTROLLER E
Application circuit example
STGIPN3H60AT
12/19
DocID026945 Rev 2
4 Application circuit example
Figure 8: Application circuit example
Application designers are free to use a different scheme according with the specifications
of the device.

STGIPN3H60AT
Application circuit example
DocID026945 Rev 2
13/19
4.1 Guidelines
Input signals HIN, LIN are active-high logic. A 500 kΩ (typ.) pull-down resistor is built-
in for each input. To prevent input signal oscillation, the wiring of each input should be
as short as possible and the use of RC filters (R1, C1) on each input signal is
suggested. The filters should be done with a time constant of about 100ns and must
be placed as close as possible to the IPM input pins.
The bypass capacitor Cvcc (aluminum or tantalum) is recommended to reduce the
transient circuit demand on the power supply. In addition, a decoupling capacitor C2
(from 100 to 220 nF, ceramic with low ESR) is suggested, to reduce high frequency
switching noise distributed on the power supply lines. It must be placed as close as
possible to each Vcc pin and in parallel to the bypass capacitor.
The use of RC filter (RSF, CSF) for current monitoring is recommended to improve
noise immunity. The filter must be placed as close as possible to the microcontroller or
to the Op-amp.
The decoupling capacitor C3 (from 100 to 220 nF, ceramic with low ESR), in parallel
to each Cboot, is recommended in order to filter high frequency disturbances.
The Zener diodes DZ1 between the Vcc pins and GND and in parallel to each Cboot is
suggested in order to prevent overvoltage.
The decoupling capacitor C4 (from 100 to 220 nF, ceramic with low ESR) in parallel to
the electrolytic capacitor Cvdc is recommended, in order to prevent surge destruction.
Both capacitors C4 and Cvdc should be placed as close as possible to the IPM (C4
has priority over Cvdc).
By integrating an application-specific type HVIC inside the module, direct coupling to
the MCU terminals without an opto-coupler is possible.
Low inductance shunt resistors should be used for phase leg current sensing.
In order to avoid malfunctions, the wiring between N pins, the shunt resistor and
PWR_GND should be as short as possible.
It is recommended to connect SGN_GND to PWR_GND at only one point (near the
terminal of shunt resistor), in order to avoid any malfunction due to power ground
fluctuation.
These guidelines are useful for application design to ensure the specifications of the
device. For further details, please refer to the relevant application note AN4043.
Table 13: Recommended operating conditions
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VPN
Supply voltage
Applied between P-Nu, Nv, Nw
300
500
V
VCC
Control supply voltage
Applied between VCC-GND
12
15
17
V
VBS
High side bias voltage
Applied between VBOOTi-OUTi
for i = U, V, W
11.5
17
V
tdead
Blanking time to prevent
Arm-short
For each input signal
1.5
µs
fPWM
PWM input signal
-40°C < Tc < 100 °C
-40°C < Tj < 125 °C
25
kHz
TC
Case operation
temperature
100
°C

Package information
STGIPN3H60AT
14/19
DocID026945 Rev 2
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
STGIPN3H60AT
Package information
DocID026945 Rev 2
15/19
5.1 NDIP-26L type C package information
Figure 9: NDIP-26L type C package outline
8278949_7
Package information
STGIPN3H60AT
16/19
DocID026945 Rev 2
Table 14: NDIP-26L type C mechanical data
Dim.
mm
Min.
Typ.
Max.
A
4.40
A1
0.80
1.00
1.20
A2
3.00
3.10
3.20
A3
1.70
1.80
1.90
A4
5.70
5.90
6.10
b
0.53
0.72
b1
0.52
0.60
0.68
b2
0.83
1.02
b3
0.82
0.90
0.98
c
0.46
0.59
c1
0.45
0.50
0.55
D
29.05
29.15
29.25
D1
0.50
0.77
1.00
D2
0.35
0.53
0.70
D3
29.55
E
12.35
12.45
12.55
e
1.70
1.80
1.90
e1
2.40
2.50
2.60
eB1
16.10
16.40
16.70
eB2
21.18
21.48
21.78
L
1.24
1.39
1.54
m
2 mm Mewv-unku'vvhaw‘y-wemhfi in 2: m
‘ "mm mm: WWW w; um“ ‘ mmmm mm mimsarvr
E]
STGIPN3H60AT
Package information
DocID026945 Rev 2
17/19
5.2 NDIP-26L packing information
Figure 10: NDIP-26L tube dimensions (dimensions are in mm)
Table 15: Shipping details
Parameter
Value
Base quantity
17 pcs
Bulk quantity
476 pcs
Notes:
8313150_3

Revision history
STGIPN3H60AT
18/19
DocID026945 Rev 2
6 Revision history
Table 16: Document revision history
Date
Revision
Changes
30-Sep-2014
1
Initial release.
13-Sep-2016
2
Updated Section 5.1: "NDIP-26L type C package information" and
Section 5.2: "NDIP-26L packing information"
Minor text changes

STGIPN3H60AT
DocID026945 Rev 2
19/19
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications , and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
Products related to this Datasheet
IGBT BIPO 600V 3A DIP